# 780 nm Single-Frequency Laser Source for High Spectral Resolution Lidar, Phase I



Completed Technology Project (2016 - 2016)

#### **Project Introduction**

High energy narrow-linewidth and frequency stable laser transmitter at 780 nm is in great demand for the development of low-cost, compact, and eyesafe high spectral resolution lidar (HSRL) for accurate aerosol and cloud profiling and distinguishing among different aerosol types. NP Photonics proposes to develop a 780 nm laser source capable of generating 20 mJ nanosecond pulses at a repetition rate of 10 kHz with wavelength tunability > 0.5 nm by use of our proprietary and mature highly doped short-length fiber amplifier technology and innovative Innoslab amplifier technology. The advantages of our proposed laser system include high reliability, narrow-linewidth, super stability, high spectral purity, robustness and compactness.

#### **Primary U.S. Work Locations and Key Partners**



| Organizations<br>Performing Work | Role                       | Туре           | Location             |
|----------------------------------|----------------------------|----------------|----------------------|
| NP Photonics, Inc.               | Lead<br>Organization       | Industry       | Tucson,<br>Arizona   |
| Langley Research Center(LaRC)    | Supporting<br>Organization | NASA<br>Center | Hampton,<br>Virginia |



780 nm Single-frequency Laser Source for High Spectral Resolution Lidar, Phase I

#### **Table of Contents**

| Project Introduction Primary U.S. Work Locations | 1 |
|--------------------------------------------------|---|
| and Key Partners                                 | 1 |
| Project Transitions                              | 2 |
| _                                                | 2 |
| Images                                           | 2 |
| Organizational Responsibility                    |   |
| Project Management                               |   |
| Technology Maturity (TRL)                        | 2 |
| Technology Areas                                 | 3 |
| Target Destinations                              | 3 |
|                                                  |   |



#### Small Business Innovation Research/Small Business Tech Transfer

# 780 nm Single-Frequency Laser Source for High Spectral Resolution Lidar, Phase I



Completed Technology Project (2016 - 2016)

| Primary U.S. Work Locations |          |  |
|-----------------------------|----------|--|
| Arizona                     | Virginia |  |

#### **Project Transitions**

O

June 2016: Project Start



December 2016: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/140315)

#### **Images**





#### **Briefing Chart Image**

780 nm Single-frequency Laser Source for High Spectral Resolution Lidar, Phase I (https://techport.nasa.gov/imag e/129181)

#### **Final Summary Chart Image**

780 nm Single-frequency Laser Source for High Spectral Resolution Lidar, Phase I Project Image (https://techport.nasa.gov/imag e/132023)

## Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

NP Photonics, Inc.

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

### **Project Management**

#### **Program Director:**

Jason L Kessler

### Program Manager:

Carlos Torrez

#### **Principal Investigator:**

Xiushan 7hu

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# 780 nm Single-Frequency Laser Source for High Spectral Resolution Lidar, Phase I



Completed Technology Project (2016 - 2016)

### **Technology Areas**

#### **Primary:**

### **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

